
Abstract. The electron localizability indicator (ELI) is
based on a functional of the same-spin pair density. It
reflects the correlation of the motion of same-spin elec-
trons. In the Hartree–Fock approximation the ELI can
be related to the electron localization function (ELF).
For correlated wavefunctions the ELI formula differs
from the one for the ELF.

Keywords: Electron localizability indicator–Configura-
tion interaction–Electron localization function

1. Introduction

Various descriptors are used to analyze the bonding
situation for molecules and solids in real space. Those
descriptors are functions or functionals of the many-
electron wavefunction obtained from a quantum
mechanical calculation. Over the past decade the
electron localization function (ELF) has earned growing
popularity, especially among chemists. The original ELF
formula of Becke and Edgecombe (ELFBE), derived at
the Hartree–Fock (HF) level of theory, is based on the
curvature of the spherically averaged same-spin condi-
tional pair probability density [1]. Because the electron
pair density is not accessible from a density functional
calculation, the wide acceptance and application of the
ELF would not have been possible without the alterna-
tive definition of ELF by Savin et al. (ELFS) [2] based on
the Pauli kinetic energy density of noninteracting
electrons, i.e., using Kohn–Sham orbitals.

Neither the curvature of the spherically averaged
same-spin conditional pair probability density nor the
Pauli kinetic energy density provide the specific features
utilizable in the bonding analysis. It is the (arbitrarily
chosen) reference to the uniform electron gas that gives
rise to the richness of chemical information so typical for

ELF. Unfortunately, this uniform electron gas reference
obscures the physical meaning of the ELF.

Recently it has turned out that it is possible to define
a localizability measure, called the electron localizability
indicator (ELI), that reproduces the ELF formula in
case of the HF wavefunction but without refering to the
uniform electron gas [3]. This new definition possesses
another appealing feature—it may be immediately
extended to correlated wavefunctions.

The key idea in developing the ELI was to divide the
whole space into a finite number of regions, each con-
taining the same (fixed) small amount of r-spin charge [3,
4, 5]. Subsequently, the integral of the same-spin electron
pair density over such a region was determined by Taylor
expansion of the pair density around the electron
coalescence point. The integration yields the so-called
q-restricted pair population from which the ELI is
constructed without a reference to the uniform electron
gas [3].

At the HF level the ELI, ELFBE, and ELFS are
apparently given by the same equation. Nevertheless, the
ELFS is a function of the electron density, whereas the
ELFBE and ELI are based on the electron pair density.
Moreover, the ELFBE, an approximation to the ELI [3],
is a function of the pair density (the curvature of the
Fermi hole at the electron coalescence point), whereas
the ELI is a functional of the pair density (a specific
integral). For correlated wavefunctions the distinctions
between the ELI and the ELF will be revealed.

With this new measure of electron localizability at
hand, it is now feasible to investigate how the inclusion
of the Coulomb correlation, that is absent in a HF
wavefunction, influences the localizability of electrons in
atoms and molecules. In the Theory part of this paper
we present the extended formula for the ELI within the
framework of configuration interaction (CI). In the
application part we present the results for a few atoms
and molecules obtained by means of the parallel-spin
ELI applied to the correlated wavefunctions and com-
pare them with the results obtained from Savin’s for-
mula via natural orbitals. Additionally, we have derived
the ELI formula for a highly accurate Hylleraas-typeCorrespondence to: M. Kohout
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2 Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

Received: 1 April 2004 / Accepted: 8 September 2004 / Published online: 13 November 2004
� Springer-Verlag 2004

Theor Chem Acc (2004) 112: 453–459
DOI 10.1007/s00214-004-0615-y



wavefunction to describe the shell structure of the he-
lium atom in a triplet state.

2. Theory

Consider a wavefunction Wðx1x2 � � � xN Þ describing a
system composed of N electrons, where xi ¼ ðri; riÞ
comprises the spatial and spin coordinates ri and ri,
respectively, pertaining to the electron i. The wavefunc-
tion determines the spinless one- and two-electron
reduced density matrices q1ðr01 j r1Þ and q2ðr01r02 j r1r2Þ,
respectively [6,7,8]:

q1ðr01 j r1Þ ¼ N
Z

dr1

Z
dx2 � � �

�
Z

dxNW�ðx01x2 � � � xN ÞWðx1x2 � � � xN Þ

q2ðr01r02 j r1r2Þ ¼
N
2

� �Z
dr1

Z
dr2

Z
dx3 � � �

�
Z

dxNW�ðx01x02 � � � xN ÞWðx1x2 � � � xN Þ:

ð1Þ

The diagonal parts of those reduced density matrices are
the electron density and the electron pair density:

qðr1Þ ¼ q1ðr1 j r1Þ
q2ðr1; r2Þ ¼ q2ðr1r2 j r1r2Þ:

ð2Þ

Note that the electron density is normalized to the
number of electrons N, whereas the pair density normal-
izes to the number of electron pairs NðN � 1Þ=2. Both
densities may be decomposed into spin components [8]
that are probability densities of finding one (in case of the
electron density) or two (in case of the pair density)
electrons with the respective spins in position space. The
nonrelativistic total electron density can be decomposed
into two spin components qa (describing the density of
electrons with spin up) and qb (spin down)

qðrÞ ¼ qaðrÞ þ qbðrÞ: ð3Þ
The pair density, on the other hand, can be decomposed
into four spin components

q2ðr1; r2Þ ¼
qaa
2 ðr1; r2Þ þ qbb

2 ðr1; r2Þ þ qab
2 ðr1; r2Þ þ qba

2 ðr1; r2Þ:
ð4Þ

Let us consider a normalized CI wavefunction

Wðx1 � � � xN Þ ¼
X

K

CKUKðx1 � � � xN Þ; ð5Þ

where K ¼ k1 � � � kN represents an ordered string of N
indices such that k1 < � � � < kN , and

UKðx1 � � � xN Þ ¼ ðN !Þ�1=2j/k1ðx1Þ � � �/kN
ðxN Þj ð6Þ

is a normalized Slater determinant constructed from the
real-valued orthonormal spin orbitals /ki

. Although the
sum in Eq. (5) runs through ordered (thus different)
strings K, we assume for convenience that the coeffi-
cients CK are antisymmetrical with respect to the
permutation of any two indices in a string K as required
by the antisymmetry of the wavefunction. UK equals

zero if two or more indices in K are the same. The
normalization of W requires thatX

K

ðCKÞ2 ¼ 1: ð7Þ

The same-spin component qrr
2 ðr1; r2Þ of the electron pair

density corresponding to the previous ansatz for the
wavefunction reads (with r ¼ a; b)

qrr
2 ðr1; r2Þ ¼
1

2

Xr

i<j

Xr

k<l

Pij;kl /iðr1Þ/jðr2Þ
�� �� /kðr1Þ/lðr2Þj j; ð8Þ

where

Pij;kl ¼
X

K 0
CK 0ijCK 0kl; ð9Þ

with K 0 ¼ k1 � � � kN�2 (i.e., K 0 is the common substring of
the coefficient indexes). Therefore the coefficients Pij;kl
involve products CKCL of all coefficients differing at
most by the indices i; j and k; l in the strings K and L.

Let us divide the space into compact mutually
exclusive space-filling regions Xq;a (referenced by the
point ra inside the region), each containing the same
small fixed r-spin charge qr. To calculate the ELI, the
qr-restricted pair population fr

q;CIðraÞ, i.e., the same-spin
pair population in Xq;a needs to be determined. The
fixed charge condition ensures that, in the case of
‘‘uncorrelated’’ motion of the same-spin electrons, the
qr-restricted pair population yields the same value
fr
q;CIðraÞ ¼ q2

r=2 for all regions Xq;a [3].
Owing to the Pauli exclusion principle and the cusp

condition [9,10], the Taylor expansion of the same-spin
pair density at the electron coalescence point begins
from the second-order term. Thus, utilizing the first non
vanishing term of this Taylor expansion yields

fr
q;CIðraÞ �

1

2

ZZ
Xq;a

ðs � rr2Þ
2qrr

2 ðr1; r2Þ
���
r2!r1

dr1dr2; ð10Þ

with

ðs � rr2Þ
2 ¼

Xx;y;z
l;m

ðl2 � l1Þðm2 � m1Þ
@2

@l2@m2
; ð11Þ

where s ¼ r2 � r1, l1 ¼ x1; y1; z1 and l2 ¼ x2; y2; z2 (and
similarly for m), respectively [3]. The nabla operator in the
equations is acting on the coordinate r2 only. Inserting
the pair density from Eq. (8) into Eq. (10), we obtain

fr
q;CIðraÞ �

1

4

Xr

i<j

Xr

k<l

Pij;kl

Xx;y;z
l;m

Z
Xq;a

dr1D
l;m
ij;klðr1Þ

�
Z

Xq;a

ðl2 � l1Þðm2 � m1Þdr2:
ð12Þ

The function Dl;m
ij;klðr1Þ is built from the i; j; k; l spin

orbitals and the respective first l and m derivatives:

Dl;m
ij;klðr1Þ ¼ ½/iðr1Þ/jðr1Þ0l � /jðr1Þ/iðr1Þ0l�

� ½/kðr1Þ/lðr1Þ0m � /lðr1Þ/kðr1Þ0m�
þ ½/iðr1Þ/jðr1Þ0m � /jðr1Þ/iðr1Þ0m�
� ½/kðr1Þ/lðr1Þ0l � /lðr1Þ/kðr1Þ0l�

ð13Þ
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The second derivatives that result from the applica-
tion of the operator ðs�rr2Þ

2 (Eq. 11) onto the same-spin
pair density in Eq. (10), vanish for the CI ansatz after
setting r2 to r1. This can easily be shown using the
expansion of the same-spin pair density into products of
determinants (Eq. 8). Let us denote the two determi-
nants j/iðr1Þ/jðr2Þj and j/kðr1Þ/lðr2Þj by dij and dkl,
respectively. The second derivative with respect to l2
and m2 of each product dijdkl is

@2

@l2@m2
ðdijdklÞ ¼ ðdijÞ0l2ðdklÞ0m2 þ ðdijÞ0m2ðdklÞ0l2

þ dijðdklÞ00l2m2 þ ðdijÞ00l2m2dkl:

ð14Þ

In this expression the second l2m2 derivative of a
determinant is multiplied by the other determinant, for
instance ðdijÞ00l2m2dkl. These terms vanish after setting r2
to r1, because the determinants dkl equal zero in this
case.

The functions Dl;m
ij;klðr1Þ can be approximated by a

Taylor expansion around the position ra in the region
Xq;a. The zero-order terms of this expansion are the
expressions Dl;m

ij;klðraÞ. Then, the qr-restricted pair popu-
lation can be approximated by

fr
q;CIðraÞ �

1

12
V ðXq;aÞ8=3gðraÞ þ X ðXq;aÞ; ð15Þ

with

gðraÞ ¼
Xr

i<j

Xr

k<l

Pij;kl

� ½/iðraÞ$/jðraÞ � /jðraÞ$/iðraÞ�
� ½/kðraÞ$/lðraÞ � /lðraÞ$/kðraÞ�:

ð16Þ

The first term in Eq. (15) is proportional to the 8/3
power of the volume V ðXq;aÞ of the region Xq;a. It
originates from the second-order term of the Taylor
expansion of the same-spin pair density around the
position r1, combined with the zero-order terms of the
Taylor expansion of the functions Dl;m

ij;klðr1Þ, i.e., the r1-
independent expressions Dl;m

ij;klðraÞ, included in the inte-
grals of Eq. 12 for which l ¼ m. All the other integrals
are collected in X ðXq;aÞ which is proportional to the
powers of V ðXq;aÞ higher than 8/3.

The regions Xq;a are controled by the fixed charge
condition, i.e., each of the (compact) regions Xq;a con-
tain the same r-spin charge qr [3]. For qr small enough
the volumes of the regions are inversely proportional to
the electron density, V ðXq;aÞ � qr=qrðraÞ. Thus, for a
sufficiently small qr all integrals in X ðXq;aÞ can be
omitted. The qr-restricted pair population for a CI
wavefunction reduces to

fr
q;CIðraÞ �

1

12
q8=3r

1

qrðraÞ8=3
gðraÞ: ð17Þ

In the HF approximation only one determinant is used
and Pij;kl ¼ dikdjl. The qr-restricted pair population for a
HF wavefunction

fr
q;HFðraÞ�

1

12
q8=3

r
1

qrðraÞ8=3

�
Xr

i<j

½/iðraÞ$/jðraÞ�/jðraÞ$/iðraÞ�2
ð18Þ

offers an appealing alternative to the usual formulation
using ~tP;rðrÞ, i.e., the term resembling the Pauli kinetic
energy density [3]. Notice that

qr~tP;r ¼qr
1

2

Xr

k

j$/ij2 �
1

8
ð$qrÞ2

¼ 1

2

Xr

i<j

½/i$/j � /j$/i�2:
ð19Þ

This opens the possibility to analyze the contributions of
orbital pairs to the ELF or the ELI, respectively.

The qr-restricted pair population fr
q;CIðraÞ enters the

ELI formula for a correlated wavefunction:

!rðraÞ ¼
1

1þ cqf
r
q;CIðraÞ

h i2 : ð20Þ

The factor cq compensates the qr dependency of fr
q;CIðraÞ

and makes the ELI and ELF values identical at the HF
level of calculation [3]:

cq ¼
6

ð3=5Þð6p2Þ2=3q8=3
r

: ð21Þ

The same-spin pair density can be written in the
following form:

qrr
2 ðr1; r2Þ ¼

1

2
qrðr1Þqrðr2Þ � qr

1ðr1jr2Þ
�� ��2h i

þ vrrðr1; r2Þ;
ð22Þ

where the term in the square brackets is the r-component
of the generalized HF matrix qGHF

2 , whereas vrrðr1; r2Þ is
the diagonal part of the same-spin component of the
cumulant density matrix [11,12,13]. The generalized HF
matrix may be easily expressed in terms of the natural
orbitals uiðrÞ (assumed to be real-valued) and natural
occupation numbers ni that are, respectively, eigenvec-
tors and eigenvalues of the one-electron reduced density
matrix (Eq. 1):

qGHF
2 ðr1; r2Þ ¼
1

2

Xr

i<j

ninj½uiðr1Þujðr2Þ � ujðr1Þuiðr2Þ�2:
ð23Þ

Using the pair density from Eq. (22) in the derivation of
the qr-restricted pair population fr

q;CI (Eqs. 17, 18) yields

fr
q;CIðraÞ �

1

12
q8=3r

1

qrðraÞ8=3

�
Xr

i<j

ninj½uiðraÞ$ujðraÞ � ujðraÞ$uiðraÞ�2
"

þr2
r2
vrrðra; r2Þ

��
r2!ra

i
:

ð24Þ

The sum in the square brackets in Eq. (24) is actually
twice qr~tP;r computed from the natural orbitals (Eq. 19).

The ELFS in the formulation of Savin et al. [2] is
based on the Pauli kinetic energy density of noninter-
acting electrons using Kohn–Sham orbitals. In analogy
to the ELFS the natural orbitals can be used to compute

455



the Pauli kinetic energy density (now for interacting
electrons). Leaving the q5=3

r reference (from the ELFS)
unchanged yields the formula ELFSI (i.e., the ELFS for
interacting electrons). The ELFSI equals the ELI after
neglecting the Laplacian of the cumulant matrix in Eq.
(24).

3. Results

Our aim is to elucidate the principles of the proposed
approach to describe the localizability for correlated
functions. A few examples were chosen to manifest the
differences between the ELI and the ELF, respectively,
without the objective to present the results for the best
optimized wavefunctions. The quantum chemical calcu-
lations were performed with the Gaussian 98 package
[14] using the aug-cc-pVTZ basis set. The ELF and the
ELI were computed from the Gaussian results with the
program DGrid [15], which was extended to evaluate the
CI vectors and configuration lists according to Eqs. (17)
and (20). The localizability basins were determined with
the program Basin [16].

3.1 H2 molecule

The wavefunction for the ground state 1Rþg of the H2

molecule is occupied by two electrons with opposite
spins. The absence of the same-spin electron pair
consequently implies zero qr-restricted pair population,
yielding ELI values equal to 1 everywhere in space
for both, the HF and the CI ansatz. The same result

is given for the ELF computed from the HF
wavefunction.

However, a very distinctive ELFSI distribution is
obtained for the CI wavefunction. Because of the
fractional occupation numbers of the natural orbitals,
more than one orbital is involved in the term

Pr
i<j ninj

½/i$/j � /j$/i�2, cf. Eq. (24), yielding a nonzero sum
value. A complete-active-space self-consistent-field
(CASSCF) calculation of H2 using six orbitals (namely
1rg, 2rg, 1ru, 2ru, 1pux, and 1puy), i.e., CASSCF(2,6) in
Gaussian notation, involves 36 Slater determinants.
The calculation yields six natural orbitals, whereby the
lowest two orbitals are occupied by 1.968 and 0.023
electrons (both spins) at the bond distance of 75 pm,
and by 1.817 and 0.176 electrons at 150 pm, respec-
tively. Figure 1 shows the 0.999-localization domains
(i.e., space regions bounded by ELFSI isosurfaces with
g ¼ 0:999) for the two bond distances. The ELFSI dis-
tribution is no longer uniform. Instead, the localization
domains visualize two hydrogen atoms without an
attractor between the protons. Loosely speaking, in this
case the ELFSI computed from natural orbitals seems
to describe ‘‘pairs’’ formed between fractional (physi-
cally nonexistent) parts of electrons. Thus, the ELFSI

represents some electron density property, different
from the correlation of motion of the same-spin elec-
trons.

3.2 N2 molecule

The active space for the CASSCF(10,8) calculation of
the ground state, 1Rþg , of the N2 molecule consisted of
the orbitals 2rg, 3rg, 2ru, 3ru, 1pux, 1puy , 1pgx, and 1pgy
(bond distance of 111 pm) [17]. The calculation involved
3136 Slater determinants.

The ELFSI computed from the resulting ten natural
orbitals (the virtual orbitals are occupied by 0.067 and
0.020 electrons, respectively) exhibits high values in the
regions of the atomic cores as well as in the bonding
region between the cores and in the region that can be
attributed to the lone electron pairs (Fig. 2a). Apart
from the bond distance (107 pm [17]) it resembles the HF
results [18]. Even the electron count of 3.44 electrons for
the basin in the bond region remains almost unchanged
with respect to the HF calculation (3.47 electrons [19]).

The overall picture remains the same using the ELI
for this small active space calculation. The ELI values in
the bond and lone pair regions are only slightly higher
than the corresponding ELF values. Consequently, as
shown in Fig. 2b, the 0.80-localization domains are only
marginally larger than the corresponding ELF domains.
The electron count for the ELI bond basin is the same as
the one for the ELF bond basin. To get an electron
count of six electrons (‘‘expected’’ for the triple bond) a
considerable shift in the zero-flux surface separating
the bond from the ‘‘lone’’ pair would be needed. Disre-
garding the argument that there is no theoretical
background for this ‘‘bond order–electron count’’ cor-
respondence, it remains an open question whether a
large-scale multireference CI could yield this shift. This
will be the subject of further investigation.

Fig. 1 Electron localization function for interacting electrons
(ELFSI) for the H2 molecule (0.999-localization domains) using
the CASSCF(2,6) wavefunction of the ground state 1Rþg . The
colormap applies to the slices in all diagrams. a Bond distance of 75
pm. b Bond distance of 150 pm. Red line H–H bond axis
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The electron counts are affected by the change of the
geometric shape of the particular basins, i.e., by the
position of the zero-flux surfaces, which in turn are
determined by the values of the localizability indicator.
However, the value of the localizability indicator, Eq.
(20), does not scale linearly with the qr independent
functional cqf

r
q;CIðraÞ, in the following denoted by v.

We emphasize this for the reason that small changes of
v, due to the inclusion of the electron correlation, are
preferably perceivable at high (i.e., close to 1) ELI
values only. In this case, small changes of the ELI are
caused by changes of v2 of approximately the same
magnitude. In contrast, for low ELI values (i.e., close
to 0) small changes of the ELI are due to relatively
large changes of v2. For convenience, let us look at two
examples considering the difference of 0.01 with respect
to the ELI values 0.98 and 0.01, respectively. The
increase of the ELI value from 0.98 to 0.99 is due to
the tiny decrease of v2 from 0.02 to 0.01, whereas the
increase of the ELI value from 0.01 to 0.02 is connected
with the large decrease of v2 from 99 to 49. Thus, the
inclusion of the electron correlation can modify the
topology of the ELI distribution at high values, but it
probably will have only a minor effect on the surfaces
of zero flux in the ELI gradient (ELI basins) controlled
by regions of low ELI.

3.3 F2 molecule

For the ground state 1Rþg of the F2 molecule the same
active space as for N2 was used. Thus, 64 Slater
determinants were involved in the CASSCF(14,8) cal-
culation (bond distance 146 pm [17]).

Figure 3a shows the ELF for the HF calculation
(bond distance of 133 pm [17]). Besides the core and lone
pair regions, visualized by the 0.85-localization domains,
a separate bond region depicted by the 0.65-localization
domain (red) around the ELF maximum at the bond
midpoint is well discernible. The integration of the
electron density in the bond basin yields an electron
count of merely 0.9 electrons. The topology around the
attractor is flat: the ELF curvature in the bond direction
is small in magnitude, which already indicates potential
instability of the attractor towards bifurcation catas-
trophe (i.e., splitting of the bond attractor, see the later
discussion of the ELI).

In Fig. 3b, showing ELFSI computed from the natu-
ral orbitals (CASSCF calculation), the core and lone
pair regions are still clearly recognizable. But one
important feature is missing: an ELFSI attractor repre-
senting the F–F bond. Instead, there is an ELFSI saddle
point at the midpoint between the cores. This can be
rationalized bearing in mind that the active space of the
occupied HF orbitals was extended by the virtual anti-
bonding orbital 3ru.

Figure 3c displays the ELI for the CASSCF calcula-
tion. Apparently, besides the cores and lone pairs, two
ELI attractors are present along the bond axis between
the cores, facing each other. This new feature is visual-
ized by the red 0.6136-localization domains enclosing the
‘‘bifurcated’’ bond attractor.

Fig. 2 0.80-localization domains for the ground state 1Rþg of the N2

molecule. a ELFSI. b Electron localizability indicator (ELI)

Fig. 3 The ground state 1Rþg of the F2 molecule. The gold

isosurfaces are the 0.85-localization domains. a ELF from the
Hartree-Fock calculation. The red 0.65-localization domain
encloses the bond attractor. b ELFSI from the natural orbi-
tals. c ELI. The red 0.6136-localization domains enclose one
‘‘bifurcated’’ bond attractor
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Using a shorter bond distance in the CASSCF
calculation (for instance the one for the HF results) also
yields the bifurcated bond attractor in the ELFSI dis-
tribution. But the volume of the largest irreducible
localization domains assigned to the bifurcated bond
attractor (i.e., just before the localization domains for
the bifurcated bond attractor join the lone pair domain)
is always higher for the ELI. The same applies for the
extension of the active space of CASSCF by additional
virtual orbitals.

3.4 He atom

The qr-restricted pair population fr
q;CIðraÞ–the basic

ingredience of the ELI—is given as the volume integral
of the electron pair density. Thus, the ELI is indepen-
dent of the actual representation of the pair density. To
demonstrate this we present here the ELI for the 23S
state of the He atom described by Hylleraas functions.
In this case the wavefunction (two same-spin electrons)
is not decomposed into orbitals. Instead, the Hylleraas
function Wðr1; r2; r12Þ explicitly includes the distance r12
between the electrons [20]. Because of the spherical
symmetry, only two additional variables are needed,
namely the distances r1 and r2 of each electron to the
nucleus.

As already described in the Theory section, the sec-
ond-order term of the Taylor expansion of the same-spin
pair density q2 around the coalescense point is needed to
approximate the qr-restricted pair population. Because
of the spherical symmetry the Laplacian can be written
as @2=@r2 þ 2=rð@=@rÞ. Bearing in mind that at the
coalescence (r12 ¼ 0) the gradient of the Fermi hole is
zero, the Laplacian of the same-spin pair density (q2 is
given as the squared Hylleraas function) will reduce to

r2
r2
q2

��
r12!0
¼ @2=@r22q2

��
r12!0

: ð25Þ

Besides the pair density Laplacian the electron density
qðr1Þ must be known to compute the approximate value

of fr
q;CIðraÞ. For the ansatz of Hylleraas the electron

density is given by the integral (omitting occasional
constants that are sometimes included in Hylleraas
functions)

qðr1Þ ¼
1

r1

Z 1
0

dr2

Z r1þr2

jr1�r2j
r2r12W

2ðr1; r2; r12Þdr12: ð26Þ

We have used two different Hylleraas functions: the
six-parameter function of Traub and Foley [21] and the
32-parameter function of Ermolaev and Sochilin [22],
respectively. The latter ansatz includes logarithmic
functions. As shown in Fig. 4, the ELI exhibits in both
cases the atomic shell structure [23]. The ELI minimum
for the 32-parameter function, at 93.6 pm, is somewhat
closer to the nucleus than the one for the six-parameter
function (at 94.5 pm). The integration of the electron
density in the first atomic shell, i.e., from the nucleus to
the ELI minimum, yields 1.0061 electrons for the 32-
parameter function. This is marginaly closer to the
‘‘ideal’’ electron count of one electron than the 1.0075
electrons for the six-parameter function.

4. Conclusions

The ELI is a functional of the same-spin electron pair
density describing the local correlation of motion of
same-spin electrons. The ELI is uniquely defined for any
approach that yields the electron pair density. The ELI
formula was derived in the framework of the configu-
ration interaction ansatz. It differs (by the Laplacian of
the cumulant matrix) from the ELFSI based on the Pauli
kinetic energy density of interacting electrons. Similarity
and difference between the ELI and the ELFSI were
principally shown for examples of H2, N2, and F2

molecules. The ELI based on Hylleraas functions was
analyzed for the triplet state of the He atom, revealing
quantitatively the atomic shell structure.
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